SMART SPIRULINA SYSTEM

by Jimmy Tang and Regina Flores Mir

THE PLUG-IN ECOLOGY

Urban Farm Pod is a "living" room for individuals and urban nuclear families to grow and provide for their daily vegetable needs.

The **Smart Spirulina System** is a bio-informatic message system incorporated into the Urban Farm Pod part of the Plug-In Ecology framework being developed at Terreform One. The objective of this project is a system design that will show how to grow Spirulina in an urban farm setting.

The system design is broken out into two areas:

- (1) A **grow system** for the cultivation of large amounts of Spirulina and a distribution system to allocate to Spirulina bottles on the surface of the sphere.
- (2) A **digital monitoring platform** that can relay specific information about the health and growing conditions of the Spirulina directly to a user's smart-phone or desktop and integrate into the Internet of Plants by providing a public and free API.

SPIRULINA

SPIRULINA

Spirulina is a cyanobacterium that can be consumed by humans and other animals. Spirulina contains a high amount of protein; over 60% of the dry body weight and **all 9 essential amino acids** that a human body needs.

DENSELY PACKED NUTRITION

- 1) Complete protein 60% dry body weight.
- 2) 10 times more calcium more than milk.
- 3) Vitamins B group B1, B2, B3, B5, B6, and B9.
- 4) Antioxidants beta-carotene, zeaxanthin, lutein, xanthophylls.

With optimal conditions Spirulina can double every 24-48 hours. It has a photosynthetic conversion rate of 8 to 10%, compared to only 3% in crop plants such as soybeans. * It is considered as one of the fastest reproduced protein sources in the world.

*Naveen K. Sharma, Ashawani K. Rai, Lucas J. Stal, Cyanobacteria: An Economic Perspective

EXPERIMENT 1

EXPERIMENT 2

~1 gallon Air Diffusion Artifical Light Open ~64 oz Air Diffusion Sunlight Closed ~5 gallon Air Diffusion Sunlight Closed

Experiment 1, after 14 days

Experiment 2, after 14 days

Experiment 3, after 14 days

SYSTEM

System Diagram

Spirulina Bottle Diagram

Visual Mockup

HARDWARE + SOFTWARE

ARDUINO

Arduino Uno
Wifi Shield
pH Sensor
RGB Sensor
Temperature Sensor
Humidity Sensor

three.js r71

SOFTWARE

Front-end Javascript, three.js

Back-end node.js

Power Source Heroku MongoLab Server Database Arduino Arduino Side Hosting Hosting Reservoir Bottles Sensors: Sensors: Front End Reservoir: Bottle: Platform 1.Liquid Level 1.RGB 2.Temperature 2.pH Level 3.RGB 3. Humidity 4.Temperature 4.pH level 5. Humidity

LIVE DEMO

NEXT STEPS

GLOBAL NETWORK

A system can link up all the Urban Farm Pods around the world.

```
"Day": "7/1",
"Plants": [
11
12
13
14
                          1,
"Temp": 30,
"Humidity": 0.34,
                            "pH": 4.09,
                           "Col": 0,
15
16
17
18
19
20
21
22
                           "id": "#2",
"RGB": [
                               0,
211,
23
24
25
26
27
                          1,
"Temp": 28,
"Humidity": 0.34,
                            "pH": 3.97,
28
29
30
31
32
33
34
35
36
37
                             "Col": 1,
                           "id": "#3",
"RGB": [
                         ],
"Temp": 30,
"Humidity": 0.35,
"pH": 4.04,
"Col": 2,
38
39
40
41
42
```

API

When farm pods exist all over the world, providing open and free access to databases via a REST API will allow users to monitor and track plant data from all regions of the world.

MOBILE APP

Further front end design could include an iOS roll-out to allow users to receive alerts via their mobile devices.

##